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We calculate frequency and temperature dependence of the anomalous ac Hall conductivity induced by
impurity scattering in a chiral px+ ipy superconductor, such as Sr2RuO4, with spontaneous time-reversal-
symmetry breaking in the absence of an external magnetic field. We consider two models of disorder, Gaussian
and non-Gaussian, characterized by the second and third moments of the random impurity potential, respec-
tively. Within both models, we find that the anomalous Hall conductivity has a finite real value at zero
frequency, exhibits singularities at the threshold of photon absorption across the superconducting gap, and
decays as some power of the high frequency �. The Hall conductivity increases linearly with the decrease in
temperature below the superconducting transition and saturates at zero temperature. Using our results for the
high-frequency Hall conductivity, we estimate the polar Kerr angle for light reflection from the material and
compare it with the experimental measurements in Sr2RuO4 by Xia et al., Phys. Rev. Lett. 97, 167002 �2006�.
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I. INTRODUCTION

Recent development of an optical apparatus based on the
Sagnac interferometer by the group of Kapitulnik led to
spectacular discoveries of the spontaneous time-reversal
symmetry breaking �TRSB� in the unconventional supercon-
ductors Sr2RuO4 �Ref. 1� and YBa2Cu3O6+x.

2 These experi-
ments measured the rotation angle �K of the polarization
plane of light upon normal reflected from the material sur-
face. A nonzero value of the Kerr angle �K indicates the
TRSB in the sample.3 Positive and negative values of �K
represent clockwise and counterclockwise rotations of polar-
ization and indicate two possible ways of spontaneous break-
ing of the time-reversal symmetry. In Sr2RuO4, a nonzero �K
appears at the superconducting transition temperature Tc
=1.5 K, so the TRSB in this material is clearly related to the
onset of superconductivity.1 In contrast, in the underdoped
YBa2Cu3O6+x, a nonzero �K appears in the temperature range
where the pseudogap develops, which is much higher than
the superconducting transition temperature.2 Thus, the TRSB
in cuprates appears to be due to a second-order phase tran-
sition with an order parameter unrelated to superconductiv-
ity.

In this paper, we focus on manifestations of the TRSB in
Sr2RuO4, which is a quasi-two-dimensional �Q2D� metal
consisting of weakly coupled conducting layers in the �x ,y�
plane.4,5 It was proposed theoretically that the superconduct-
ing pairing in Sr2RuO4 is spin triplet with the chiral px� ipy
orbital symmetry.6 In this state, the Cooper pairs have the
angular momentum Lz= �1 pointing perpendicular to the
conducting layers of Sr2RuO4. This order parameter breaks
the time-reversal symmetry and is the two-dimensional �2D�
analog of the A phase in superfluid 3He.7–9 There is substan-
tial experimental evidence indicating that Sr2RuO4 is indeed
a spin-triplet10,11 p-wave12 superconductor. However, the chi-
ral orbital symmetry of the order parameter and the violation
of the time-reversal symmetry are still under debate.13 The
early evidence for the TRSB came from the muon spin-
relaxation measurements.14 Recent observations of the spon-

taneous polar Kerr effect in optics1 and dynamical domains
of the superconducting order parameter in Josephson
junctions15 give strong evidence for the chiral pairing with
the TRSB.16,17 However, the scanning superconducting quan-
tum interference device and Hall-probe experiments18,19 de-
signed to search for domains with opposite chiralities on
the surface of Sr2RuO4 did not find any evidence for
such domains and for the TRSB. The discrepancy between
these experimental results shows that the TRSB in super-
conductors is not fully understood and requires further
investigation.13 Chiral superconductors with the TRSB are
expected to have many unusual properties, e.g., certain
vortex excitations with zero-energy Majorana modes in the
core.20,21 These nonlocal quasiparticle excitations obey non-
Abelian statistics and are studied in the context of topologi-
cal quantum computation.22 The fractional quantum Hall
state at the filling factor 5/2 was proposed to be analogous to
the px+ ipy superconductivity.20,23

Here, we study an important manifestation of the TRSB in
the superconducting state: the emergence of anomalous
�spontaneous� Hall conductivity �xy in the absence of an ex-
ternal magnetic field. This study is motivated by the experi-
mental measurement1 of the polar Kerr effect in Sr2RuO4.
According to the textbook calculations using classical
electrodynamics,24 the Kerr angle �K is determined by the ac
Hall conductivity �xy���, where � is the frequency of light
in the experiment. Thus, the experimental observation1 of a
nonzero �K at T�Tc signifies appearance of a nonzero
anomalous ac Hall conductivity in the material. However, a
theoretical calculation of the anomalous ac Hall conductivity
for a chiral px+ ipy superconductor turned out to be a rather
nontrivial problem and led to some controversies briefly re-
viewed in the next subsection.

A. Theories of the anomalous ac Hall conductivity in a clean
chiral px+ ipy superconductor

Most of the previous theoretical calculations of the
anomalous Hall conductivity focused on the clean limit for a
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chiral translationally invariant superconductor in the absence
of impurities. However, a straightforward calculation of the
current-current correlation function shown in Fig. 1 and in-
volving interaction with the Ax and Ay components of the
electromagnetic vector potential gives zero result.7,25–32 This
implies that the Hall conductivity �xy in a clean chiral super-
conductor is zero, even though a nonzero value is nominally
permitted by the TRSB. Kim et al.33 obtained a nonzero
value of �xy for an anisotropic superconducting pairing, but
their calculated conductivity tensor is symmetric �xy =�yx.
So, it does not represent the antisymmetric Hall conductivity
��xy =−�yx� and does not contribute to the polar Kerr effect.

On the other hand, it was found that the charge-current
correlation function represented by the Feynman diagram
with the scalar electromagnetic potential A0 and the vector
potential Ax or Ay is nonzero in chiral superconductors.7,26–32

It describes the magnetoelectric effect, i.e., a change in the
electric charge density in response to an applied magnetic
field Bz. As a consequence of this effect, a magnetic vortex
would acquire the fractional electric charge e /4.34 A setup
for an experimental detection of the magnetoelectric effect in
chiral superconductors was proposed in Ref. 32.

In conventional �nonsuperconducting� quantum Hall sys-
tems, the magnetoelectric effect is directly related to the Hall
conductivity via the Streda formula.35 However, in supercon-
ductors, this relation is invalid, and the magnetoelectric ef-
fect does not imply the Hall effect. Incorrect claims were
made in Refs. 7, 31, and 36 on the basis of the magnetoelec-
tric effect that clean chiral superconductors have a nonzero
anomalous Hall effect. It was shown in Refs. 26–29, 32, and
37 that when the contribution from the collective current of
the superconducting condensate is properly taken into ac-
count in a gauge-invariant manner, the Hall conductivity
vanishes. This result is also in qualitative agreement with the
conclusions of Ref. 38. In principle, a nonzero value of the
Hall conductivity �xy�q ,�� can be obtained for a nonzero
in-plane wave vector q.26–29,32 However, the estimates done
in Ref. 32 using q derived from the laser beam diameter in
the experiment1 give the value of �xy many orders of mag-
nitude smaller than what is necessary to explain the experi-
ment. A nonzero but very small Kerr angle was obtained in
Ref. 39 by considering the orbital collective modes in a px
+ ipy superconductor. However, the estimated value of �K is
too small to explain the experiment.1

References 40 and 41 claimed that in unconventional su-
perconductors, it is necessary to make the Peierls-Onsager-
style substitution of the momentum p→p−eA in the

momentum-dependent superconducting order parameter
��p�. As a result, a new vertex of interaction with the elec-
tromagnetic field A would appear in the Hamiltonian of the
superconducting system, and this vertex may give a nonzero
value to �xy. However, this substitution is wrong for a num-
ber of reasons, as explained in detail in Appendix A. The
absence of such substitution was shown in several papers,
including Refs. 7, 23, 42, and 43 and was recently recog-
nized in Ref. 44.

In fact, the vanishing of the anomalous Hall conductivity
for a clean superconductor can be understood on general
grounds using Galilean invariance of the system.20 In the
absence of an external magnetic field, the electric field Ex
applied in the x direction cannot induce a center-of-mass
motion of the electron gas in the transverse y direction no
matter whether the pairing between electrons is chiral or not
because there is no total external Lorentz force acting in the
y direction. Thus, the experimental observation of the polar
Kerr effect1 cannot be explained within any model of a clean
Galilean-invariant chiral superconductor.45

The general argument given above uses the Galilean in-
variance of a translationally invariant system. However, elec-
trons in a crystal are subject to a periodic lattice potential,
which breaks translational symmetry and, thus, may invali-
date the general argument. In fact, there are well-known ex-
amples of periodic systems, such as the TRSB topological
insulators and metals, where a topologically nontrivial band
structure produces the anomalous Hall effect.46,47 However,
this effect has nothing to do with superconductivity and,
thus, is not relevant for the Kerr effect in Sr2RuO4. Relation
between chiral superconductors and the TRSB topological
insulators and metals is discussed in more detail in Appendix
B.

B. Role of impurities in the anomalous Hall effect

Following the general argument presented in the preced-
ing subsection, we realize that, in order to obtain a nonzero
anomalous Hall conductivity, it is necessary to identify a
physical mechanism for producing an external force on the
electron gas in the transverse y direction. Scattering on im-
purities breaks translational invariance and provides a
mechanism for momentum transfer between electrons and
the crystal lattice, which may generate a net force in the y
direction, if the pairing between electrons is chiral. Making
an analogy between a Cooper pair with the angular momen-
tum Lz=1 and a spinning baseball, we observe that the base-
ball does not deflect sideways when flying in vacuum, but
does deflect in the air because friction with the air generates
the transverse Magnus force. Similarly, scattering on impu-
rities can provide an effective friction between the spinning
Cooper pairs and the crystal lattice and, thus, generate a
transverse force. It should be emphasized that a periodic lat-
tice potential alone, in the absence of impurities, does not
produce a nonzero Hall conductivity for a chiral p-wave
superconductor.32 It is the random scattering on impurities
that provides a mechanism for momentum relaxation in the
electron gas.

The effect of disorder on the anomalous Hall conductivity
in a px+ ipy superconductor was studied by Goryo.48 He con-

FIG. 1. The Feynman diagram representing the anomalous Hall
conductivity of a clean chiral p-wave superconductor. The wavy
lines represent an external electromagnetic field, and the solid lines
are the electron Green’s functions in the Nambu representation.
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sidered the skew-scattering processes, which involve triple
scattering events on a given impurity. This process requires
the existence of a nonzero third moment of the impurity
potential averaged over random realizations. Since the third
moment is zero for the commonly used Gaussian distribu-
tion, we call this type of distribution the non-Gaussian dis-
order. A similar model of disorder was used in the context of
the anomalous Hall effect,49–52 as well as the spin Hall
effect,53–55 for nonsuperconducting materials. In fact,
Sinitsyn47 was the first to point out that impurity scattering
may contribute to the anomalous Hall effect in chiral super-
conductors.

Goryo48 calculated the anomalous ac Hall conductivity
�xy��� for a px+ ipy superconductor in the limit of high fre-
quencies ���0, where 2�0 is the superconducting gap, and
for T close to Tc. This limit is relevant for the experiment,1

which utilized �=0.8 eV, whereas the gap at T=0 can be
estimated from the BCS relation as 2�0=3.5 Tc
=0.46 meV. Goryo found that the anomalous Hall conduc-
tivity is predominantly real in this limit and behaves as
�xy� ����1 /�3. However, this result is inconsistent with the
general causality relation ����=���−��.56

In this paper, we calculate the real and imaginary parts of
the antisymmetric conductivity tensor �xy���=−�yx��� origi-
nating from skew scattering on impurities for the full range
of frequency � and temperature T consistently with the cau-
sality relation. We find that the factor of i=�−1 was over-
looked in the calculation of Ref. 48. Then we consider a
more conventional model of Gaussian disorder and calculate
the Feynman diagrams, where electrons scatter on two dif-
ferent impurities. We show that these diagrams also give a
nonzero anomalous Hall conductivity for a chiral supercon-
ductor if the particle-hole asymmetry is taken into account.
The role of the particle-hole asymmetry was discussed in
Ref. 39 for chiral p-wave superconductors and in Refs.
57–60 for the Hall-effect anomaly associated with vortex
motion in the high-Tc superconductors. Then we compare the
expressions for �xy��� obtained for these two models of
Gaussian and non-Gaussian disorder and discuss the domi-
nant contribution at the high frequencies relevant for the
Kerr effect measurements.1

The paper is organized as follows. In Sec. II, we first
show that �xy vanishes for a clean chiral px+ ipy supercon-
ductor. Then we show that the lowest-�second-�order dia-
grams in the strength of the impurity scattering also give a
vanishing �xy. After that, we present a general discussion of
the higher-order contributions, which lead to a nonzero �xy.
In Sec. III, we calculate �xy

�3���� originating from the skew-
scattering diagrams for the non-Gaussian model of disorder.
In Sec. IV, we calculate �xy

�4���� for the Gaussian model of
disorder in the presence of the particle-hole asymmetry. The
implications of our results for the experiments in Sr2RuO4
are discussed in Sec. V, and conclusions are given in Sec. VI.
Technical details of calculations are relegated to Appendixes
A and F.

II. THEORETICAL MODEL AND GENERAL DISCUSSION

In this section, we first introduce a theoretical model for
the calculation of the anomalous ac Hall conductivity. Then,

after a brief discussion of the clean limit, we present a gen-
eral discussion of the effects of impurity scattering on the
anomalous Hall conductivity.

We use the electromagnetic gauge, where the scalar po-
tential A0 is set to zero, and the electromagnetic field is char-
acterized by the transverse component of the vector potential
A. Within the linear-response approach, the current j appear-
ing in response to an infinitesimal vector potential A is

j�q,�� = QJ�q,��A�q,�� , �1�

where QJ�q ,�� is the electromagnetic response tensor. From
this tensor, we can obtain the conductivity tensor �ij�q ,��
relating j with the electric field E=−�tA

�ij�q,�� = −
Qij�q,��

i�
. �2�

In the experiment,1 the light beam is incident along the z axis
perpendicular to the two-dimensional �2D� conducting layers
of Sr2RuO4, and the vector potential A is polarized in the
�x ,y� plane of the layers. So, we calculate the off-diagonal
response function Qxy���=−Qyx��� at q=0, which deter-
mines the ac Hall conductivity �xy��� and the Kerr angle
�K.24

A. Model of a chiral px+ ipy superconductor

The triplet superconducting pairing is characterized by the
vector d, which determines spin polarization of the triplet
Cooper pairs.61 For Sr2RuO4, we consider the case where the
vector d has a uniform momentum-independent orientation.9

Selecting the spin-quantization axis along the vector d, we
obtain the representation,32 where the triplet Cooper pairing
takes place between electrons with the opposite spins.62 For
the orbital symmetry, we consider the chiral pairing potential
��p�=�0�px� ipy� / pF, where px, py, and pF are the in-plane
electron momenta and the Fermi momentum. It is convenient
to write this pairing potential in the form

��p� = �xpx + i�ypy �3�

and set �x= ��y =�0 / pF only at the end of the calculations.
The sign of the product

sxy � sign��x�y� �4�

represents the sign of the order-parameter chirality. Notice
that the dimensionality of �x and �y is different from that of
�0.

In the Matsubara representation, the action Sel of the elec-
tron system can be written32 as a 2	2 Nambu matrix acting
on the spinor ��p ,
l�= ��↑�p ,
l� ,�↓

†�−p ,
l��, where � and
�† are the destruction and creation operators of the electrons
with the momentum p, the fermionic Matsubara frequency

l, and the spin projection ↑ or ↓,

Sel = �
p,
l

�†�p,
l��i
l�̂0 − �p��̂3 − px�x�̂1

+ py�y�̂2���p,
l� . �5�

Here �̂1,2,3,0 are the Pauli matrices and the unity matrix acting
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on the spinor �. We set the Planck and Boltzmann constants
to unity: �=1 and kB=1. The function �p� represents the
electron energy dispersion counted from the chemical poten-
tial �. Interaction of electrons with the electromagnetic field
is described by the action Sem

Sem = − e �
p,
l

v�p� · A�i�n��†�p,
l + �n��̂0��p,
l� . �6�

Here e is the electron charge, v�p�=��p� /�p is the electron
velocity, �n is the bosonic Matsubara frequency of the elec-
tromagnetic field, and the wave vector q of the electromag-
netic field is set to zero.

Sr2RuO4 is a Q2D metal consisting of weakly coupled
conducting layers. Its electron dispersion �p� can be written
as

�p� = ���px,py� − 2t� cos�pzd� − � . �7�

The first term in Eq. �7� represents the in-plane electron dis-
persion, and the second term is the tight-binding out-of-plane
dispersion with the tunneling amplitude t� and the interlayer
distance d. Generally, the Fermi surface of Sr2RuO4 is rather
complicated and consists of three sheets.5 To simplify the
presentation, we consider only one sheet and assume that the
in-plane dispersion is isotropic, i.e., �� depends only on p
=�px

2+ py
2, which is a good approximation for the � sheet.5

We assume that the interlayer tunneling is weak t���, so
the Fermi surface is a slightly corrugated cylinder extended
along the pz direction with the average radius pF in the
plane.9 For a given value of the out-of-plane momentum pz,
Eq. �7� shows that the system can be treated as a 2D metal
with the effective chemical potential �̃�pz�=�
+2t� cos�pzd� weakly dependent on pz. Such an effective 2D
description is possible because the pairing potential ��p� in
Eq. �3� does not depend on pz, and the vector potential A in
Eq. �6� is polarized in the �x ,y� plane. So, in the rest of the
paper, we calculate the anomalous Hall conductivity �xy per
one layer for a purely 2D electron system with the dispersion
�p�=���p�−�. A generalization to the Q2D case involves
trivial additional averaging over pz within each fermion loop
of the Feynman diagrams. The bulk Hall conductivity is ob-
tained by dividing the 2D result for �xy by the interlayer
distance d.

B. Anomalous Hall conductivity of a chiral superconductor in
the clean limit

The electromagnetic response function Qxy �1� for the
models �5� and �6� is given by the Feynman diagram in Fig.
1. The analytic expression for this diagram is

Qxy��n� = e2 Tr�vx�p�Ĝ�
l,p�vy�p�Ĝ�
l + �n,p�� , �8�

where Tr denotes the trace over the Nambu space, as well as
the sum over the internal momenta p and fermionic frequen-
cies 
l. The Green’s function for the chiral p-wave super-
conductor in the Nambu representation is obtained by invert-
ing the kernel in Eq. �5�,

Ĝ�
l,p� = −
i
l�̂0 + p�̂3 + px�x�̂1 − py�y�̂2


l
2 + p

2 + px
2�x

2 + py
2�y

2 . �9�

Here we write the argument p of the dispersion �p� as the
subscript in order to shorten the mathematical equation.

Using Eq. �9� for calculation of the trace over the Pauli
matrices �̂ in Eq. �8�, we find

Qxy = 2e2T	 d2p

�2��2vxvy�

l

i
l�i
l + i�n� + p
2 + �0

2

��
l + �n�2 + Ep
2��
l

2 + Ep
2�

,

�10�

where Ep=�p
2+�0

2 is the quasiparticle energy. It is clear that
the response function Qxy in Eq. �10� vanishes upon integra-
tion over the orientation of p because vx is an odd function of
px and vy is an odd function of py. Even if an anisotropic
model with �x��y is considered,33 still a similar calculation
gives a symmetric tensor Qxy =Qyx, which does not represent
the Hall conductivity25 and is not relevant for the
experiment.1

C. Disorder-induced anomalous Hall conductivity

As discussed in Sec. I B, in order to obtain a nonzero
anomalous Hall conductivity for a chiral superconductor, it is
necessary to include the effect of disorder. Thus, we add the
impurity scattering term to the action of the system,

Simp = − �
q,p,
l

Vimp�q��†�p + q,
l��̂3��p,
l� , �11�

where Vimp�q� is the impurity potential written in the mo-
mentum representation. We assume that the dominant scat-
tering mechanism comes from the short-range disorder. The
first and the second moments of the probability distribution
function of the impurity potential Vimp�q� are


Vimp�q�� = 0,


Vimp�q�Vimp�q��� = niu0
2��q + q�� . �12�

Here the averaging is performed over different realizations of
the disordered potential, and ni and u0 are the 2D concentra-
tion of impurities and the strength of the disorder potential,
respectively.

It is well known that impurity scattering suppresses un-
conventional superconducting pairing when the parameter
�0� �where � is the quasiparticle scattering time� becomes of
the order of unity because the Anderson theorem does not
apply to non-s-wave pairing.63 Suppression of superconduc-
tivity by disorder has been experimentally observed in
Sr2RuO4 �Ref. 64� and is one of the arguments in favor of the
unconventional pairing symmetry. Therefore, we study the
case where the concentration of impurities is very low, so
that �0��1, and the superconducting pairing is not signifi-
cantly affected by impurities. In fact, Sr2RuO4 is a very clean
stoichiometric material, where impurities are not introduced
intentionally, and physical origin of residual disorder is not
clear. Nevertheless, the presence of a small but nonzero con-
centration of impurities can still induce a nonzero anomalous
Hall effect. For such a low concentration of impurities, the
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anomalous Hall response can be studied perturbatively in the
strength of the disorder potential and would be dominated by
the lowest-order nonvanishing diagrams.

The lowest-order contributions to the anomalous Hall
conductivity appear in the second order in Vimp�q� as shown
in Fig. 2. The diagram �a� represents a self-energy correction
to the Green’s function of the electrons due to disorder. In
p-wave superconductors, the momentum average of the gap
is zero: �p��p�=0. Thus, the self-energy corrections modify
only the �0 and �3 components of the Green’s function �9�.
However, such a modification does not change the Nambu
structure of the current-current correlation function �8�.
Therefore, similarly to the clean case, the diagram �a� gives a
vanishing contribution to the anomalous Hall conductivity.

On the other hand, the diagram �b� in Fig. 2 has a non-
trivial structure and deserves a more detailed discussion. The
analytical expression for the diagram �b� is

Qxy
�2b���n� = niu0

2 Tr��̂x�̂3�̂y�̂3� , �13�

where Tr is taken over the Pauli matrices and the internal

frequency 
l. The effective vertices �̂x and �̂y are

�̂x = − e�
p1

Ĝ�
l + �n,p1�vx�p1�Ĝ�
l,p1� =

−
epF

2

2
�x�̂1	

−�D

�D d

2�

i�2
l + �n�
��
l + �n�2 + Ep

2��
l
2 + Ep

2�
�

−
iepF

2�x

4�n
�̂1 1

�
l
2 + �0

2
−

1

��
l + �n�2 + �0
2� �14�

and

�̂y = − e�
p2

Ĝ�
l,p2�vy�p2�Ĝ�
l + �n,p2�

= i
epF

2

2
�y�̂2	

−�D

�D d

2�

�2
l + �n�
��
l + �n�2 + Ep

2��
l
2 + Ep

2�

�
iepF

2�y

4�n
�̂2 1

�
l
2 + �0

2
−

1

��
l + �n�2 + �0
2� . �15�

In going from the first to the second lines in Eqs. �14� and
�15�, we integrated over the angular orientation of the elec-
tron momentum p. For the integration in the radial direction,
we make the linearized approximation for the 2D electron
dispersion

�p� � vF�p − pF� , �16�

where vF is the Fermi velocity. This approximation is justi-
fied because the integrals converge in the vicinity of the
Fermi surface. Then, the integration over dp can be replaced
by integration over d=vFdp. The limits of integration over
 are given by the BCS cutoff energy �D, which is deter-
mined, presumably, by the energy scale of ferromagnetic
fluctuations inducing the p-wave superconductivity in
Sr2RuO4. Throughout the paper, we assume that �D�� ,�0
and neglect corrections to Eqs. �14� and �15� on the order of
O��D

−3�.
Substituting Eqs. �14� and �15� into Eq. �13�, we find that

Qxy
�2b�=0 because Tr��̂1�̂3�̂2�̂3�=0. So, there is no contribution

to the Hall conductivity to the second order in Vimp. Thus, we
have to consider the higher-order diagrams in order to obtain
a nonzero Hall conductivity.

D. Anomalous Hall conductivity due to the higher-order
diagrams in disorder potential

In the rest of the paper, we study the higher-order contri-
butions in disorder potential. This requires to specify the
assumptions about the probability distribution of the disorder
potential Vimp. Below, we consider two models with the
Gaussian and non-Gaussian distributions of the disorder po-
tential. In the case of the Gaussian distribution of disorder, it
is enough to specify the second-order cumulant given in Eq.
�12�. All other higher-order moments are either zero �odd in
Vimp� or can be expressed in terms of the second-order cu-
mulant �even in Vimp�. In the case of a non-Gaussian distri-
bution of disorder, the odd cumulants may be nonzero. In
particular, the third moment �skewness� within a non-
Gaussian model is


Vimp�q�Vimp�q��Vimp�q��� = �3niu0
3��q + q� + q�� . �17�

Here �3 is a dimensionless parameter characterizing the
skewness, which varies from 0 to 1 depending on the devia-
tion of the actual distribution function from the Gaussian.
For example, �3=1 corresponds to randomly distributed im-
purities generating short-range delta-function potentials of
the equal strength u0. The contributions to the Hall conduc-
tivity to the first order in the third moment �17� are shown in
Fig. 3.

The skew-scattering diagrams, similar to those shown in
Fig. 3, were studied for the anomalous Hall effect in
ferromagnets50–52 and for the extrinsic spin Hall effect53–55 in
semiconductors. In the case of a chiral p-wave supercon-
ductor, the anomalous Hall conductivity due to the skew-

FIG. 2. The lowest-order diagrams in impurity scattering for the
anomalous Hall conductivity. The dashed lines represent scattering
potential from the same impurity shown by the cross.

FIG. 3. The skew-scattering diagrams contributing to the
anomalous Hall conductivity. The three connected dashed lines rep-
resent the third moment �17� of the impurity potential.
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scattering diagrams of Fig. 3 was first calculated by Goryo48

for high frequencies ���0 and T close to Tc. In Sec. III, we
calculate the real and imaginary parts of �xy��� originating
from the skew-scattering diagrams shown in Fig. 3 for the
full range of frequencies � and for any temperature T.

For the Gaussian model of disorder, the higher-order dia-
grams contributing to the Hall conductivity are shown in Fig.
4. We calculate the real and imaginary parts of �xy��� origi-
nating from these diagrams in Sec. IV. We show that these
diagrams give a nonzero contribution to the Hall conductiv-
ity only when we take into account the particle-hole asym-
metry, which is discussed in more detail in the next subsec-
tion.

E. Sign of the anomalous Hall conductivity

In this section, we use the symmetries of the problem to
discuss what factors determine the sign of the anomalous
Hall conductivity.

First, let us discuss the time-reversal operation. The Hall
conductivity changes sign upon the time reversal �xy→
−�xy. On the other hand, the time-reversal operation also
results in complex conjugation of the Hamiltonian. For a
chiral p-wave superconductor, it means that ��p�→���p�, so
the pairing potential �3� changes its chirality. Thus, we con-
clude that

�xy��� = − �xy���� , �18�

i.e., changing the sign of chirality of the superconducting
order parameter changes the sign of the anomalous Hall con-
ductivity, so �xy �sxy �see Eq. �4��.

When we employ the commonly used linearized approxi-
mation �16� for the electron dispersion, the problem acquires
an additional symmetry upon the exchange of the electron
and hole operators ��p�→�†�p� and �†�p�→��p�. This op-
eration preserves the fermion anticommutation relations, so
it is a canonical transformation. Upon the particle-hole trans-
formation and subsequent commutation of the � and �† op-
erators, the Hamiltonian of the kinetic energy of electrons
�pp�†�p���p� transforms to the original form �up to an ad-
ditive constant�, but with the sign change in the energy dis-
persion p→−p. If, in addition, we use the approximation
�16� and change the radial momentum variables p→2pF− p
in the sum, the kinetic energy returns to the original form,
i.e., becomes invariant under the particle-hole transforma-
tion.

Now, let us examine how the other terms in the Hamil-
tonian transform upon the particle-hole transformation
�↔�†. For the superconducting pairing potential, we find

that �→��, so the chirality changes to the opposite. For the
impurity potential �11�, we find that Vimp→−Vimp. On the
other hand, the observable Hall conductivity �xy should not
depend on the choice of operators � and �†, which are inte-
grated out. So, we obtain

�xy��,Vimp� = �xy���,− Vimp� �19�

and, combining with Eq. �18�,

�xy��,Vimp� = − �xy��,− Vimp� . �20�

Equations �19� and �20� are valid only when the approxima-
tion �16� is employed, and the electron kinetic energy has the
particle-hole symmetry.

Equation �20� shows that the sign of the Hall conductivity
must change with the sign change in the impurity potential.
This is indeed the case for the skew-scattering diagrams
shown in Fig. 3, where �xy �Vimp

3 . Thus, we conclude that the
skew-scattering diagrams can be calculated using the linear-
ized approximation �16�. The sign of the anomalous Hall
conductivity given by these diagrams changes when repul-
sive impurities are replaced by attractive ones. In that sense,
the sign of the anomalous Hall effect produced by skew scat-
tering is not a property of the Sr2RuO4 material as such but is
a property of the impurities in this material. This conclusion
is in contrast to the sign of the conventional Hall effect,
which is determined by the sign of carriers, electrons or
holes, but not by the sign of the impurity potential.

On the other hand, the diagrams for the Gaussian model
of disorder shown in Fig. 4 give �xy �Vimp

4 , which is incom-
patible with Eq. �20�. It means that these diagrams must
vanish when calculated using the linearized approximation
�16�. In order to obtain a nonzero result for these diagrams,
we must go beyond the linearized approximation �16� and
take into account the curvature of the electron dispersion
�p�, i.e., to take into account the electron-hole asymmetry.
This is similar to the conventional Hall effect, whose sign is
determined by the particle-hole asymmetry. In this sense, the
anomalous Hall effect given by the diagrams in Fig. 4 re-
flects the properties of the material because its sign is deter-
mined by asymmetry of the electron spectrum and does not
depend on the sign of the impurity potential.

It should be emphasized, however, that the magnitude of
the anomalous Hall conductivity given by the diagrams in
Figs. 3 and 4 is still proportional to some power of the
strength of the impurity scattering. In this sense, the magni-
tudes of the measured anomalous Hall conductivity and the
Kerr angle do not characterize the Sr2RuO4 material as such
but characterize the degree of disorder in the samples of this
material. This conclusion can be verified experimentally by
intentionally introducing mild dozes of disorder into
Sr2RuO4, such that superconductivity is not significantly
suppressed. The theory predicts that the observed Kerr angle
should increase substantially after the introduction of disor-
der.

Concluding this section, we remark that the diagrams
shown in Fig. 2 still vanish, even if we take into account the
particle-hole asymmetry. Their vanishing is a consequence of
angular integration over electron momentum. We also men-
tion that the effects of particle-hole asymmetry are important

FIG. 4. The lowest-order diagrams contributing to the Hall con-
ductivity within the Gaussian model of disorder with the particle-
hole asymmetry.
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to explain certain properties of the superfluid 3He,61 and,
thus, may be relevant for Sr2RuO4 as well. By taking into
account the particle-hole asymmetry, Yip and Sauls39 showed
that a chiral p-wave superconductor exhibits circular dichro-
ism and birefringence, which arise from the collective modes
of the order parameter. However, the effect is too small to
explain the experiment.1 The particle-hole asymmetry was
also discussed in relation with the sign change of the Hall
effect at Tc in the high-Tc superconductors attributed to vor-
tex motion.57–60

III. SKEW SCATTERING IN THE NON-GAUSSIAN
MODEL OF DISORDER

In this section, we study the non-Gaussian model of dis-
order. Within this model, the nonzero contributions to the
anomalous Hall conductivity �xy are given by the diagrams
in Fig. 3. These diagrams differ from the diagram in Fig. 2
by the presence of an additional fermion loop. The analytical
expressions for diagrams �a� and �b� in Fig. 3 can be written
as

Qxy
�3a���n� = �3niu0

3 Tr��̂x�̂3Ĝ�
l,p3��̂3�̂y�̂3� , �21�

Qxy
�3b���n� = �3niu0

3 Tr��̂x�̂3�̂y�̂3Ĝ�
l + �n,p3��̂3� , �22�

where the effective vertices �̂x and �̂y are given by Eqs. �14�
and �15�. The trace is taken over the Pauli matrices, the fre-
quency 
l, and the momentum p3 in the additional fermion
loop. The integration over p3 yields

�
p3

Ĝ�
l,p3� = N�0�	
−�D

�D

d
− i
l�̂0


l
2 + 2 + �0

2 �
− i
l�̂0N�0��

�
l
2 + �0

2
.

�23�

Here we used the approximation �16� and introduced the 2D
energy density of states N�0� at the Fermi level

N�0� =
1

V
�

p

���p�� �
pF

2�vF
, �24�

where V is the volume of the system. For a model with the
parabolic dispersion �� = p2 /2me and an effective electron
mass me, Eq. �24� gives N�0�=me /2�, but we will write our
results for a general dispersion.

Substituting Eq. �23� into Eqs. �21� and �22� and evaluat-
ing the Nambu traces �Qxy

�3a��Tr��̂1�̂2�̂3�=2i and Qxy
�3b�

�Tr��̂1�̂3�̂2�=−2i�, we find the following result for the full
response function Qxy

�3�=Qxy
�3a�+Qxy

�3b� �Ref. 65�:

Qxy
�3���n� = �3niu0

3e2�N�0�pF
4�x�y

8�n
2�0

H��n� . �25�

Here the dimensionless function H��n� is

H��n� = �0T�
l
 1

�
l
2 + �0

2

−
1

��
l + �n�2 + �0
2�2 
l

�
l
2 + �0

2

−

l + �n

��
l + �n�2 + �0
2� . �26�

The Matsubara sum in Eq. �26� can be evaluated using a
contour of integration in the complex plane enclosing the
points of nonanalytic behavior, as shown in Appendix C. The
result is

H��n� =

tanh�0

2T
�

2 � �n + 3i�0

��n��n + 2i�0�
+

�n − 3i�0

��n��n − 2i�0�
�

+
�0

�
	

�0

� tanh x

2T
�dx

�x2 − �0
2 � 3ix − 2�n

�0
2 + �ix − �n�2

−
3ix + 2�n

�0
2 + �ix + �n�2� . �27�

Then, we perform the analytical continuation in Eq. �27�

i�n → �+ = � + i� , �28�

where � is the real physical frequency, and � is an infinitesi-
mal positive number. Thus, we obtain the retarded finite-
temperature response function Qxy

�3���� and, via Eq. �2�, the
anomalous Hall conductivity �xy

�3���� per layer

�xy
�3���� = sxy

e2

�

W�0

�3 H�+

�0
� , �29�

W = − �3niu0
3�N�0�pF

2

8�2 . �30�

Here the sign function sxy is given by Eq. �4�. We restore the
factor � in Eqs. �29� and �30� but assume that the frequency
� is measured in the energy units. We also introduce the
parameter W with the dimensionality of �energy�2, which
characterizes the strength and skewness of the non-Gaussian
disorder potential. The parameter W can be positive or nega-
tive depending on the sign of the impurity potential u0 and
will be estimated in Sec. V. The dimensionless function H�x�
describes frequency and temperature dependence of the chi-
ral response

H�x� = 	
1

�

dy

tanh y�0

2T
�

��y2 − 1
� 3y + 2x

1 − �y + x�2 −
3y − 2x

1 − �y − x�2�
−

1

2
tanh�0

2T�� x − 3
�x�2 − x�

+
x + 3

�− x�x + 2�
� . �31�

Generally, the function H�x� takes complex values when the
variable x=�+ /�0 changes from −� to �. Using Eqs. �31�
and �29�, it is easy to check that �xy��� satisfies the causality
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requirement �xy���=�xy
� �−��.56 Equations �29� and �31� give

a complete answer for the real and imaginary parts of the
anomalous Hall conductivity �xy

�3���� for arbitrary frequency
and temperature.

Now we focus on the limit T=0, where the function H�x�
can be calculated analytically by setting the tanh function to
unity in Eq. �31�,

H�x� = −
�x − 3�arccos�1 − x�

��x�2 − x�
−

�x + 3�arccos�1 + x�
��− x�2 + x�

.

�32�

Taking into account that the function arccos�x� of a real vari-
able x has a real value for �x��1 and an imaginary value for
�x��1, we observe that the second term in Eq. �32� is always
real for x�0, whereas the first term is real for 0�x�2 and
imaginary for x�2. The appearance of the imaginary part for
x�2 represents the threshold of absorption across the super-
conducting gap for photons with the energies ��2�0. The
real and imaginary parts of H�x� exhibit a square-root singu-
larity at x=2:H�x��1 /�2−x. The other asymptotes are

H�x� = �
8

105�
x3, x → 0

− i −
4 ln x

�x
, x → � .� �33�

Frequency dependence of the real and imaginary parts of
�xy

�3���� at T=0 obtained from Eqs. �29� and �32� is plotted in
Fig. 5. We observe that the imaginary part of �xy appears
only for ��2�0, above the threshold of photon absorption.
In the high-frequency limit ���0, �xy

�3���� is given by Eqs.
�29� and �33�,

�xy
�3���� = − sxy

e2

�

W�0

�3 �i +
4

�

�0

�
ln �

�0
�� , �34�

where �0 is the superconducting gap at T=0. In the dc limit
�=0, �xy

�3� has the finite real value

�xy
�3��� = 0� = sxy

8

105�

e2

�

W

�0
2 . �35�

At a finite temperature T�0, �0�T� in Eqs. �29� and �31�
should be understood as the temperature-dependent super-
conducting energy gap obtained by solving the appropriate
BCS equation for the chiral p-wave pairing.61 It can be easily
verified that at high frequency ��Tc, the imaginary part of
�xy

�3���� is much greater than the real part at any T�Tc, as in
Eq. �34� at T=0. Thus, we focus on the temperature depen-
dence of the imaginary part �xy�

�3��� ,T�. Taking the limit x
�1 in Eq. �31� and observing that the first integral term
gives a negligible contribution to the imaginary part, we find
from Eq. �29�

�xy�
�3���,T�

�xy�
�3���,0�

=
�0�T�
�0�0�

tanh�0�T�
2T

�, � � Tc. �36�

The plot of Eq. �36� is shown in Fig. 6 using �0�T� calcu-
lated from the BCS equation.66,67 For T close to Tc, where
�0�T��T, the tanh function in Eq. �36� can be replaced by
its argument, so �xy

�3� becomes proportional to the square of
the superconducting order parameter �0

2�T�. In the Ginzburg-
Landau theory, �0

2�T�� �Tc−T�, so Eq. �36� gives a linear
temperature dependence for �xy

�3� �and, thus, �K� near Tc. The
factor �0

2 originates from the product �x�y in Eq. �25� be-
cause both �x and �y are necessary for a nonzero anomalous
Hall effect, as emphasized in Ref. 31. However, �xy

�3� at T
=0 in Eq. �34� is proportional to the first power of �0, some-
what reminiscent to what was proposed in Ref. 1. Curiously,
the temperature dependence in Eq. �36� is the same as for the
critical current in Josephson junctions.68

For high frequency ��Tc and T close to Tc, we obtain
the following expression for the real and imaginary parts of
�xy

�3��� ,T� from Eqs. �29� and �31�:

�xy
�3���,T� = − sxy

e2

�

W�0
2�T�

�3Tc
� i

2
+

4

�

Tc

�
ln �

Tc
�� . �37�

The imaginary part �xy� �1 /�3 in Eq. �37� looks similar to
the real part of �xy calculated by Goryo in Eq. �5� of Ref. 48
for the same model in the same asymptotic limit. Given the
causality requirement �xy���=�xy

� �−��,56 it appears that the

FIG. 5. �Color online� Frequency dependence of the real
�dashed line� and imaginary �solid line� parts of the anomalous Hall
conductivity �xy

�3���� at T=0 given by Eqs. �29� and �32�.
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FIG. 6. �Color online� Temperature dependence of the imagi-
nary part of the anomalous Hall conductivity �xy�

�3��� ,T� for �
�Tc given by Eq. �36� with �0�T� from the BCS theory �Ref. 67�.
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factor of i=�−1 was overlooked in the calculation of Ref. 48,
so the real and imaginary parts of �xy were interchanged.

IV. MODEL OF THE GAUSSIAN DISORDER WITH
PARTICLE-HOLE ASYMMETRY

In this section, we calculate the anomalous Hall conduc-
tivity for the Gaussian model of disorder by taking into ac-
count the effects of particle-hole asymmetry.

The lowest-order nonvanishing diagrams in this case are
shown in Fig. 4. Figure 4�b� actually represents four similar
diagrams, with self-energy corrections to the upper and
lower Green’s functions. These diagrams can be considered
as the lowest-order terms of a more general diagrammatic
series shown in Fig. 7, which is often considered in calcula-
tions of transport properties of metals with disorder. We find
it more practical to calculate the general series of diagrams in
Fig. 7 and then take the limit of low concentration of impu-
rities, which corresponds to the diagrams in Fig. 4. In this
way, we can be sure that all contributions of the same order
are taken into account, and mutual signs of the diagrams are
correct.

A. Self-consistent noncrossing approximation

We begin with calculation of the Green’s function Ĝp�
l�
dressed due to impurity scattering. �Starting from this sec-
tion, we write the momentum p in the argument of the
Green’s function as a subscript in order to shorten notation in
long mathematical equations.� The dressed Green’s function
is obtained from Dyson’s equation shown in Fig. 7�a�, where
we make the standard noncrossing approximation, assuming
that EF��1 and neglecting diagrams with intersecting impu-

rity lines. The self-energy �̂�
l� due to impurities is

�̂�
l� = niu0
2�

p

Ĝp�
l� = i
l�1 − �1�
l���̂0 − �2�
l��̂3.

�38�

One can notice that the terms with �̂1 and �̂2 vanish after
angular integration of ��p� over p in Eq. �38�. Here we in-
troduced the functions �1�
l� and �2�
l� defined as

�1�
l� = 1 +
1

��
l
2 + �0

2
, �39�

�2�
l� =
1

��
	

−�D

�D N��d

N�0�



l
2 + �0

2 + 2 , �40�

1

�
= niu0

2�N�0� , �41�

where � is the quasiparticle lifetime due to scattering on
impurities. One can notice that within the Gaussian model of
disorder, the concentration of impurities ni and the strength
of the impurity potential u0 can be completely absorbed into
the definition of the quasiparticle lifetime � in Eq. �41�. This
is not the case for the non-Gaussian model of disorder dis-
cussed in Sec. III.

The function �1�
l� in Eq. �39� is well known in the
theory of impurity scattering. Moreover, the first term with �̂0
in Eq. �38� is, essentially, the same as in Eq. �23�. In contrast,
the function �2�
l� in Eq. �40� is less common and deserves
more discussion because it will play crucial role in this sec-
tion. The function N�� in Eq. �40� is the energy density of
states as a function of the electron energy . If we make the
approximation N��=N�0�, i.e., take N�� to be a constant
then the integral in Eq. �40� vanishes because the integrand is
odd in . However, if we take into account that N�� is not a
constant, i.e., consider the particle-hole asymmetry, then
�2�
l� is nonzero. Let us expand N�� near the Fermi energy

N�� � N�0� + N��0� , �42�

where N��0�=dN /d is taken at =0. When Eq. �42� is sub-
stituted into Eq. �40�, the integral diverges. However, as we
will see later, this divergence cancels out in the final results,
and the outcome can be expressed in terms of N��0�, which
is a measure of the particle-hole asymmetry.

Using �̂�
l� from Eq. �38� to solve Dyson’s equation,

Ĝp
−1�
l� = Ĝp

−1�
l� − �̂�
l� , �43�

we obtain the dressed Green’s function

Gp�
l� = −
i
l�1�̂0 + �p − �2��̂3 + px�x�̂1 − py�y�̂2


l
2�1

2 + �p − �2�2 + �0
2 .

�44�

In order to calculate the two-particle response function
self-consistently, it is necessary to include vertex corrections
due to impurity lines. They transform the bare vertex �̂ j�p�
=−ev j�p��̂0 of interaction with the electromagnetic field in

Eq. �6� into the dressed vertex �̂ j�p�. The vertex �̂ j�p� is
obtained by solving the Bethe-Salpeter equation illustrated in
Fig. 7�b�,

�̂ j�p� = �̂ j�p� + niu0
2�

p�

�̂3Ĝp��
l��̂ j�p��Ĝp��
l + �n��̂3.

�45�

For elastic impurity scattering, the integral Eq. �45� can be
solved analytically by summing the geometric series as

FIG. 7. Diagrams for the �a� disorder-dressed Green’s function,
the �b� vertex function, and the �c� response function.
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shown in Appendix D. The solution for �̂y, which contributes
to the anomalous Hall response �see Eq. �52��, is given by
Eq. �D4�,

�̂y�p� = �y�p� +
�ypFvF

2��
�− ia1�̂1 + a2�̂2�L�
l,�n�

	 1 − b1

�1 − b1�2 + b3
2 �̂0 +

ib2

�1 − b1�2 + b3
2 �̂3� . �46�

Here the functions a1 and a2 are defined as

a1�
l,�n� = �2�
l� − �2�
l + �n� , �47�

a2�
l,�n� = i
l�1�
l� + i�
l + �n��1�
l + �n� , �48�

and the function L�
l ,�n� is

L�
l,�n� = 	
−�D

�D N��d

N�0�
1

D�
l,�D�
l + �n,�

�
1

�2
l + �n��l
 1

��0
2 + 
l

2
−

1

��0
2 + �
l + �n�2� ,

D�
l,� = 
l
2�1

2�
l� + � − �2�
l��2 + �0
2. �49�

The functions b1 and b2 are given by the integrals

b1�
l,�n� =
1

��
	

−�D

�D N��d

N�0�
� − �2�
l��� − �2�
l

+�� + 
l
l
+�1�
l��1�
l

+�
D�
l,�D�
l

+,�
, �50�

b2�
l,�n� =
1

��
	

−�D

�D N��d

N�0�

l

+�1�
l
+�� − �2�
l�� − 
l�1�
l�� − �2�
l

+��
D�
l,�D�
l

+,�
, �51�

where 
l
+=
l+�n.

Using Eqs. �44� and �46�, one can now calculate the
dressed response function Qxy

�4� shown in Fig. 7�c� �Ref. 65�

Qxy
�4���n� = Tr��̂x�p�Ĝp�
l��̂y�p�Ĝp�
l + �n�� . �52�

This expression can be simplified by integrating over the

angle of p first. After substituting the dressed vertex �̂y�p�,
the contribution from the first term in Eq. �46� drops out after
taking the trace over the Nambu space, as discussed in Sec.
II B. Thus, we are left only with the second momentum-
independent term in Eq. �46�, and the integral over p in Eq.
�52� reduces to

�
p

Ĝp�
l + �n��̂x�p�Ĝp�
l� =
�xpF

2

4�
�a2�̂1 − ia1�̂2�L�
l,�n� .

�53�

�One can notice that in the zeroth order in disorder ��1=1
and �2=0�, Eq. �53� reduces to Eq. �14�.� Substituting Eq.
�53� into Eq. �52�, i.e., multiplying Eq. �53� by the second
term in Eq. �46�, and taking the trace, we obtain the response
function

Qxy
�4���n� = −

e2�x�ypF
3vF

4�2�
T�


l

L2�
l,�n�

	− 4ia1a2�1 − b1� − 2�a1
2 + a2

2�b2

�1 − b1�2 + b2
2 � . �54�

In contrast to the clean case discussed in Sec. II B, the re-

sponse function �52� does not vanish identically because the
second term in Eq. �46� is momentum independent as a con-
sequence of randomization of electron momentum due to
scattering on impurities. However, if the model has the
particle-hole symmetry then the functions a1 �47� and b2 �51�
vanish, and, thus, the anomalous Hall response �54� is zero to
any order in impurity scattering. To obtain a nonzero result,
we need to take into account the particle-hole asymmetry
explicitly, as discussed in the next subsection.

B. Perturbative expansion in the strength of disorder

As mentioned in Sec. II C, Sr2RuO4 is a stoichiometric
crystalline material with a very low concentration of impuri-
ties, and the existence of p-wave pairing requires that �0
�1 /�. Thus, we can use the strength of disorder as a small
parameter and expand the anomalous Hall response function
�54� to the lowest nonvanishing order in 1 /�. The nonvan-
ishing term appears in the order �1 /��2, i.e., in the fourth
order in Vimp,

Qxy
�4���n� = − sxy3

e2�0
2pFvF

2�2�
T�


l

L2�
l,�n��2
l + �n���2�
l�

− �2�
l + �n�� . �55�

Notice that one power of 1 /� appears in the prefactor in Eq.
�55�, and another power comes from the function �2 defined
in Eq. �40�. Equation �55� precisely corresponds to the dia-
grams shown in Fig. 4.

Using Eqs. �40� and �42�, the difference �2�
l�−�2�
l
+�n� in Eq. �55� can be written as
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�2�
l� − �2�
l + �n� =
1

��
	

−�D

�D N��d

N�0�
 1


l
2 + 2 + �0

2 −
1

�
l + �n�2 + 2 + �0
2�

=
1

�

N��0�
N�0�

����n + 
l�2 + �0
2 − �
l

2 + �0
2�−

2

��

N��0�
N�0�

�n�2
l + �n�
�D

. �56�

When Eq. �42� is substituted into Eq. �56�, the constant term
N�0� in the density of states cancels out, and the term pro-
portional to N��0� produces a convergent integral over .
Thus, the anomalous Hall response �55� becomes directly
proportional to the particle-hole asymmetry parameter N��0�
and would vanish if N��0�=0.

For generality, we consider the finite limits of integration
��D in Eq. �56�. The first term in Eq. �56� represents the
value of the integral when the limits are taken to ��,
whereas the second term is a correction due to the finite
limits of integration, assuming that �D��0 ,�n. As we will
see below, one of these two terms gives the dominant con-
tribution to the imaginary and the other one to the real part of
the ac Hall conductivity in the high-frequency limit. We first
evaluate the cutoff-independent contribution to �xy��� given
by the first term in Eq. �56� and then the cutoff-dependent
contribution from the second term.

1. Cutoff-independent contribution to the anomalous
Hall conductivity

Substituting the first term in Eq. �56� into Eq. �55� �or
taking the limit �D→��, we obtain the cutoff-independent
contribution Qxy

�4a� to the anomalous Hall response function

Qxy
�4a���n� = − sxy

3e2��0

�2�2�n
2K��n� , �57�

where the dimensionless parameter � is a measure of the
particle-hole asymmetry

� =
pFvFN��0�

2N�0�
, �58�

and the dimensionless function K��n� is

K��n� = �

l

T�0

2
l + �n
 1

�
l
2 + �0

2
−

1

��
l + �n�2 + �0
2�2

	����n + 
l�2 + �0
2 − �
l

2 + �0
2� . �59�

The Matsubara sum in Eq. �59� can be evaluated using com-
plex analysis as shown in Appendix E. The function K��n�
can be written as the sum of three terms

K��n� = K1��n� + K2a��n� + K2b��n� , �60�

where the functions K1��n�, K2a��n�, and K2b��n� are given
by Eqs. �E4�, �E6�, and �E7�. After the analytical continua-
tion �28�, we obtain

K1��� = 	
1

� dx

2�

− i12�̃

�x2 − 1��̃+
2 − 4x2�

tanh x�0

2T
� , �61�

K2a��� =
1

2
tanh�0

2T
��� �̃+

�̃+ + 2
+� �̃+

�̃+ − 2
� , �62�

K2b��� = 2i	
1

� dx

2�
�x2 − 1 tanh x�0

2T
�

	� 1

�2x + �̃+��1 − �x + �̃+�2�

−
1

�2x − �̃+��1 − �x − �̃+�2�� , �63�

where �̃+= ��+ i�� /�0.
Using Eqs. �57� and �2�, we find the cutoff-independent

contribution �xy
�4a� to the anomalous Hall conductivity

�xy
�4a���� = − sxy

e2

�

3��0

�2�2�3 iK�+

�0
� , �64�

where the dimensionless function K �60� is given by the sum
of Eqs. �61�–�63�.

At T=0, the function K�y� becomes

K�y� =
1

2
� y

y + 2
+� y

y − 2
� +

6i

�

arcsin�y/2�
�4 − y2

+ i	
1

� dx

�
� �x2 − 1

�2x + y��1 − �x + y�2�

−
�x2 − 1

�2x − y��1 − �x − y�2�
� . �65�

The plots of the real and imaginary parts of �xy
�4a� vs � at T

=0 obtained from Eqs. �64� and �65� are shown in Fig. 8. At
y=2, the function K�y� exhibits a square-root singularity.
The asymptotes of K�y� are

− iK�y� = �
1

15�
y3, y → 0

− i −
6

�y
ln y , y → � .� �66�

So, at high frequencies ���0, �xy
�4a� becomes

�xy
�4a���� = − sxy

e2

�

3��0

�2�2�3�i +
6

�

�0

�
ln �

�0
�� , �67�

and the dc limit is
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�xy
�4a��� = 0� = sxy

e2

�

�

5�3 1

��0
�2

. �68�

The electron-hole asymmetry factor � given by Eq. �58� is,
generally, on the order of unity, whereas the factor ��0�1 in
Eq. �68� is large, as required for the existence of p-wave
superconductivity. Thus, the anomalous dc Hall conductivity
�68� per layer is always much smaller than the quantum of
conductance e2 /h.

2. Cutoff-dependent contribution to the anomalous
Hall conductivity

Now we consider the contribution Qxy
�4b� to the anomalous

Hall response function �55� from the second term in Eq. �56�,
which depends on the energy cutoff �D,

Qxy
�4b���n� = − sxy

6e2��0

�3�2�D�n
J��n� , �69�

where the dimensionless function J��n� is

J��n� = T�0�
l
 1

�
l
2 + �2

−
1

��
l + �n�2 + �2�2

. �70�

The Matsubara sum in Eq. �70� is calculated in Appendix F.
The result for J��n� is

J��n� = tanh�0

2T� −
2

�
	

�0

� dx

�x2 − �0
2
tanh x

2T�
	 �0

��ix + �n�2 + �0
2

+
�0

��ix − �n�2 + �0
2� . �71�

Performing the analytical continuation �28� in Eqs. �2�, �69�,
and �71�, we obtain the cutoff-dependent term �xy

�4b� in the
anomalous Hall conductivity,

�xy
�4b���� = sxy

e2

�

6��0

�3�2�D�2J�+

�0
� . �72�

Here the dimensionless function J�y� is

J�y� = tanh�0

2T� −
2

�
	

1

� dx
�x2 − 1

tanh x�0

2T � 1
�1 − �x − y�2

+
1

�1 − �x + y�2� . �73�

At T=0, the explicit analytical expression for the function
J�y� can be obtained from Eq. �73�,

J�y� = 1 −
2

�
	

1

� dx
�x2 − 1

 1
�1 − �x − y�2

+
1

�1 − �x + y�2
�

= − 1 −
4

��4 − y2�Fi Arcsinh��2 − y

y
� ;

y2

y2 − 4
�

− Fi arcsinh��−
2 + y

y
� ;

y2

y2 − 4
�� . �74�

The function F�x ;k� is the incomplete elliptic integral of the
first kind. The plots of the real and imaginary parts of �xy

�4b�

vs � at T=0 obtained from Eqs. �72� and �74� are shown in
Fig. 9. At y=2, the imaginary part of J�y� has a discontinuity
�jump�, whereas the real part of J�y� has a logarithmic diver-
gence. The function J�y� has the following asymptotes:

J�y� = � −
1

16
y2, y → 0

1 −
4i

�y
ln y , y → � .� �75�

So, at high frequencies ���0, �xy
�4b� becomes

�xy
�4b���� = sxy

e2

�

6��0

�3�2�D�2�1 −
4i

�

�0

�
ln �

�0
�� . �76�

and the dc limit is

�xy
�4b��� = 0� = − sxy

e2

�

6�

16�3�2�D�0
. �77�

FIG. 8. �Color online� Real �dashed line� and imaginary �solid
line� parts of the cutoff-independent contribution �xy

�4a���� to the
anomalous Hall conductivity at T=0 given by Eqs. �65� and �65�.

FIG. 9. �Color online� Real �dashed line� and imaginary �solid
line� parts of the cutoff-dependent contribution �xy

�4b���� to the
anomalous Hall conductivity at T=0 given by Eqs. �72� and �74�.

LUTCHYN, NAGORNYKH, AND YAKOVENKO PHYSICAL REVIEW B 80, 104508 �2009�

104508-12



3. Comparison of the cutoff-dependent and cutoff-independent
contributions to the anomalous Hall conductivity

Combining Eqs. �64� and �72�, we obtain the total anoma-
lous Hall conductivity �xy

�4� within the Gaussian disorder
model with particle-hole asymmetry,

�xy
�4� = �xy

�4a� + �xy
�4b�. �78�

At high frequencies ���0, the asymptotic expressions
for the real and imaginary parts of the anomalous Hall con-
ductivity �78� are

�xy�
�4���� = sxy

e2

�

3��0

�3�2 � 2

�D�2 −
6�0

�4 ln �

�0
�� , �79�

�xy�
�4���� = sxy

e2

�

3��0

�2�2 �−
1

�3 −
8�0

�2�D�3 ln �

�0
�� . �80�

Equation �80� shows that the dominant contribution to the
imaginary part �xy�

�4� is given by the cutoff-independent term.
In contrast, Eq. �79� shows that in the case of �0����D
��2 / ��0 ln�� /�0��, the dominant contribution to the real
part �xy�

�4� is given by the cutoff-dependent term. This is why
it is important to perform calculations keeping the cutoff �D
large, but finite.

On the other hand, the low-frequency anomalous Hall
conductivity is dominated by the cutoff-independent term
�xy

�4a���xy
�4b� from Eqs. �68� and �77� at �=0.

V. EXPERIMENTAL IMPLICATIONS

A. Estimates of the anomalous Hall conductivity

In this section, we discuss experimental implications of
our results �29� and �78� for the anomalous Hall conductivity.
First, we estimate the magnitude of the anomalous dc Hall
conductivity �xy��=0�.

Within the Gaussian disorder model, the dc Hall conduc-
tivity is given by Eq. �68�. �As discussed in the preceding
section, Eq. �77� gives a negligible contribution compared
with Eq. �68�.� For a crude estimate, we use the following
values of the parameters in Eq. �68�, �0=0.23 meV, as es-
timated in Sec. I B from the value of Tc, 1 /��7	10−5 eV
taken from Ref. 1, and ��10. The particle-hole asymmetry
parameter � �58�, in principle, can be deduced more accu-
rately from the band-structure calculations69 for Sr2RuO4.
Thus, we obtain an estimate for �xy

�4� from Eq. �68�,

�xy
�4��� = 0� � 10−2e2

�
. �81�

Because ��0�1, the dc Hall conductivity �68� within the
Gaussian disorder model is much smaller than the conduc-
tance quantum e2 /h.

Now we consider the anomalous dc Hall conductivity
�xy

�3���=0� originating from the non-Gaussian disorder
model. Equation �35� for �xy

�3���=0� contains the parameter
W �30� proportional to the combination �3niu0

3, which is dif-
ferent from the combination niu0

2 appearing in Eq. �41� for �.
Thus, the knowledge of the impurity scattering time � alone
is not sufficient to calculate W. In addition to �, one needs to

know the concentration of impurities ni and the skewness
parameter �3. Goryo48 estimated the typical distance between
impurities as li=1000–5000 Å. For the estimates in our pa-
per, we use the value li=1000 Å, which corresponds to ni
�1014 m−2.70 Using Eq. �24� for N�0� and Eq. �41� for 1 /�,
we rewrite the expression for W in the following form:

�W� = �3�pF
3�vF

32ni�
3 � �6 meV�2. �82�

For the numerical estimate given in Eq. �82�, we used the
values pF=0.75 Å−1 and vF=5.5	104 m /s from Ref. 5
�giving EF= pFvF /2=0.14 eV� and the values of 1 /� and ni
quoted above. For an estimate of the skewness parameter, we
took the upper limit �3=1, not having information about the
actual nature of impurities. This value corresponds, for ex-
ample, to randomly distributed impurities generating short-
range delta-function potentials of the equal strength u0, as
discussed after Eq. �17�. The same assumption was utilized
in Ref. 48.

Substituting Eq. �82� into Eq. �35�, we obtain an estimate
for the magnitude of the dc Hall conductivity within the
non-Gaussian model

�xy
�3��� = 0� � 18

e2

�
. �83�

Equation �83� gives a value much greater than the conduc-
tance quantum e2 /h, even though ��0�1. Thus, for the pa-
rameters given above, we find that the contribution from the
skew-scattering diagrams to �xy��=0� is dominant. This is
because the skew-scattering processes correspond to the
lower-order diagrams in impurity concentration. Finally, we
emphasize that our calculation is done for a single domain of
the px� ipy superconductor, while a realistic macroscopic
sample of Sr2RuO4 should consists of multiple domains with
opposite chiralities. The dc Hall-effect contributions of the
opposite signs from different domains would cancel out and
make an experimental verification of Eq. �83� difficult.

We now calculate the anomalous ac Hall conductivity
given by Eqs. �29�, �64�, �72�, and �78� at the optical fre-
quency �=0.8 eV utilized in the experiment.1 Some of these
equations contain the cutoff frequency �D, which depends on
the microscopic nature of the pairing interaction and is not
known very well. In our calculations, we assumed that �D
��. Using the optical frequency � as the lower bound for
the cutoff frequency �D, we find

�xy
�3��� = 0.8 eV� � �10−10 + 10−8i�

e2

�
, �84�

�xy
�4��� = 0.8 eV� � �10−12 + 10−12i�

e2

�
. �85�

Comparing Eqs. �84� and �85�, we observe that the non-
Gaussian model gives a much greater contribution than the
Gaussian model to both real and imaginary parts of �xy��
=0.8 eV�. Thus, in the rest of this section, we will use Eq.
�84� for the non-Gaussian model to estimate the Kerr angle.
However, one should keep in mind that the dominance of
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�xy
�3� is the consequence of the high estimate for the parameter

W in Eq. �82�. This estimate depends on the parameters �3,
ni, and u0, for which there are no direct measurements. Simi-
larly, �xy

�4� for the Gaussian model depends on the parameters
� and �D, for which there are no direct measurements either.
The parameter � utilized for both models is only indirectly
inferred from the dc conductivity in Ref. 1. Given these great
uncertainties, our numerical estimates should be considered
as only tentative.

B. Estimates of the polar Kerr angle

The anomalous Hall conductivity �xy contributes to the
dielectric permeability tensor �J, which characterizes propa-
gation of electromagnetic waves in the medium. The dielec-
tric permeability tensor �J is related to the conductivity tensor
�J as follows:

�J = �J� +
4�i

�
�J . �86�

Here �J� is the background dielectric tensor, which originates
from polarizability of the other nonconduction bands in the
material. The diagonal components of the conductivity tensor
are assumed to have the Drude-like form,

� j j = −
� j

2

4�i�� + i� j�
, �87�

where � j and � j are the plasma frequency and the quasipar-
ticle scattering rate along jth axes, respectively. Due to the
square symmetry of Sr2RuO4 in the ab plane, we have �x
=�y =�ab, �x=�y =�ab, and �xx=�yy =�ab, so

�ab��� = �� −
�ab

2

��� + i�ab�
. �88�

It should be emphasized that we distinguish between 1 /�, the
scattering rate on impurities given by Eq. �41�, and �, the
quasiparticle scattering rate at optical frequencies, which
may be dominated by other scattering processes.

Now let us consider a polarized electromagnetic plane
wave incident in the z direction normal to the �x ,y� surface
of a Q2D chiral superconductor, as relevant for the
experiment.1 Propagation of the electromagnetic wave in the
medium is described by Maxwell’s equation,

�c2�z
2 + �2�J�E = 0, �89�

where E is polarized in the �x ,y� plane. The anomalous Hall
conductivity �xy produces antisymmetric off-diagonal matrix
elements �xy =−�yx in the tensor �J via Eq. �86�. Thus, propa-
gation of the wave inside of the superconductor is described
by two circularly polarized eigenmodes with different refrac-
tion indices n+ and n−. Given that the off-diagonal elements
are typically very small ��xy�� ��xx�, one can expand n+ and
n− to the first order in �xy ��xy. Then, using the boundary
conditions for the electric field at the interface between
vacuum and the material, one finds the reflection coefficient
�r� and the polar Kerr angle �K �Refs. 24 and 36�

�r� =
�n − 1�
�n + 1�

, �90�

�K =
4�

�d
Im��xy�������� , �91�

���� =
1

n�n2 − 1�
=

1
��ab�����ab��� − 1�

. �92�

Here n���=��ab��� is the complex refraction coefficient. In
Eq. �91�, �xy��� is the 2D Hall conductivity per one layer
calculated in the previous sections, and the interlayer dis-
tance d=6.8 Å �Ref. 5� converts it into the three-
dimensional bulk conductivity implied in Eq. �86�. As Eq.
�91� shows, the magnitude of the Kerr angle �K depends not
only on the anomalous Hall conductivity �xy��� but also on
the complex refraction coefficient n���. The frequency de-
pendence of the refraction coefficient is beyond the scope of
the present paper, in which we focus on the TRSB effects.
Therefore, we estimate the parameters determining n���
from the experimental data,71 where the out-of-plane optical
conductivity of Sr2RuO4 was studied. Because many param-
eters �e.g., the quasiparticle scattering rate �� for the diago-
nal component �xx��� of the conductivity tensor are difficult
to estimate, it is desirable to measure n��� experimentally
for the same samples where the Kerr effect is measured.

According to Ref. 71, the dielectric constant and the
plasma frequency in the ab plane are ��=10 and �ab
=2.9 eV.72 Substituting these values into Eq. �88�, we find
the frequency of the plasma edge �p=�ab /���=0.9 eV. So,
the measurement frequency �=0.8 eV in the experiment1

appears to be below the plasma edge frequency �p. Another
important parameter here is the quasiparticle scattering rate
�ab. There is experimental evidence that �ab is quite large, on
the order of a fraction of eV.71 To illustrate the importance of
this parameter for the estimate of �K, below we discuss two
limits ���ab and ���ab.

The case of ���ab was previously considered by
Goryo,48 who obtained the value for the Kerr angle to be
about 30 nrad. However, as we showed in Sec III, the ana-
lytical structure of the Hall conductivity obtained by Goryo
is incorrect, which leads to a much smaller estimate for the
Kerr angle as we discuss below. Indeed, consider the expres-
sion �91� for the Kerr angle in the following form:

�K =
4�

�d
�������xy� ��� + ������xy� ���� , �93�

where ����� and ����� are the real and imaginary parts of
����. For the frequency ���p below the plasma edge, Eq.
�88� gives �ab����0, so the index of refraction n���
=��ab��� and ���� in Eq. �92� are imaginary. Therefore, the
main contribution to �K in Eq. �93� comes from the real part
of �xy. Using the estimate �xy� ��=0.8 eV��10−10 e2 /�
from Eq. �84�, we find �K�0.1 nrad. This estimate is much
smaller than the one obtained by Goryo because the real part
of �xy is three orders of magnitude smaller than the imagi-
nary part that was used in his estimate.

We now consider the other limit ���ab. The experimen-
tal measurements of �ab in the normal state at T=9 K by
Katsufuji et al.71 indicate that the quasiparticle scattering rate
at the optical frequency ��0.8 eV is �ab�0.4 eV. Assum-
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ing that the magnitude of the quasiparticle scattering rate is
the same in the superconducting state at T�Tc, the real and
imaginary parts of ���� become on the same order as shown
in Fig. 10. Then, according to Eq. �93�, both real and imagi-
nary parts of the Hall conductivity �84� give comparable con-
tributions to the Kerr angle. Using Eq. �88� with the value
�ab�0.4 eV quoted above and Eqs. �84�, �92�, and �93�, we
estimate the Kerr angle in this case as

�K � 43 nrad. �94�

This estimate is on the same order of magnitude as the ex-
perimentally observed �K

exp�65 nrad.1

In the process of calculating the estimates, we made nu-
merous approximations and assumptions. The values of
many parameters that appear in the theory are unknown, and
more measurements are needed to determine them. Neverthe-
less, the final estimate �94� is encouraging and indicates that
impurity scattering may provide a viable explanation for the
polar Kerr effect in Sr2RuO4.

When �� and �� in Eq. �93� are on the same order, �K is
dominated by �xy� , which is much greater than �xy� . Thus,
�K�T���xy� �T�, so the temperature dependence of �xy� �T� de-
termines the temperature dependence of �K�T�, assuming that
� at high frequencies does not depend significantly on tem-
perature for T�Tc. Then, Eq. �36� and the plot in Fig. 6 give
the temperature dependence of the normalized Kerr angle
�K�T� /�K�0�. This theoretical result can be directly compared
with the temperature dependence of �K�T� experimentally
measured in Ref. 1.

VI. CONCLUSIONS

In this paper, we calculate the anomalous �spontaneous�
ac Hall conductivity �xy��� for a chiral px+ ipy supercon-
ductor, such as Sr2RuO4, in the long-wavelength limit q
→0 in the absence of an external magnetic field. We show
that the anomalous Hall conductivity vanishes for a transla-
tionally invariant system, and a nonzero result requires the
presence of impurities. Nonzero contributions to the anoma-
lous Hall conductivity appear in the higher order �above the
second order� of the perturbation theory in impurity scatter-
ing. We consider two models of disorder potential: Gaussian
and non-Gaussian. The Gaussian model is characterized by

the second moment of the random impurity potential,
whereas the non-Gaussian model has a nonzero third mo-
ment. For the Gaussian disorder model, we present a sym-
metry argument and demonstrate by direct calculations that a
nonzero anomalous Hall conductivity requires particle-hole
asymmetry of the electron spectrum. Thus, the magnitude
and the sign of �xy��� depend on the band-structure param-
eter N��0�, which is the derivative of the normal density of
states at the Fermi level. On the other hand, the anomalous
Hall conductivity in the non-Gaussian model is not propor-
tional to the particle-hole asymmetry parameter, and its sign
is determined by the sign of the impurity potential. There-
fore, in principle, these two models can be distinguished ex-
perimentally by introducing positively and negatively
charged impurities. However, in practice, such a discrimina-
tion may be difficult because the sign of the anomalous Hall
conductivity also depends on the sign of the chirality of the
superconducting px� ipy order parameter.

By calculating the lowest-order nonvanishing Feynman
diagrams shown in Figs. 3 and 4, we obtain closed-form
expressions for the frequency and temperature dependences
of the anomalous Hall conductivities originating from these
two models. As a function of frequency, the calculated Hall
conductivities �xy��� have a finite real value at �=0 and
exhibit singularities at the threshold of photon absorption
�=2�0. At high frequencies ���0, the dominant contribu-
tion to the anomalous Hall conductivity comes from the
imaginary part �xy� ���, which decays as 1 /�3 �see Figs. 5, 8,
and 9�. As a function of temperature T, the high-frequency
�xy� �� ,T� increases linearly with the decrease in temperature
near Tc and saturates at T→0, as shown in Fig. 6.

In order to estimate whether the Gaussian or non-
Gaussian term gives a dominant contribution to the anoma-
lous Hall conductivity for Sr2RuO4, it is necessary to know
the parameters characterizing the electron spectrum and the
strength of the disorder. The latter is poorly known. Never-
theless, by making a number of assumptions and approxima-
tions, we obtain numerical estimates, which show that the
non-Gaussian term dominates over the Gaussian one both at
high and low frequencies.

The polar Kerr angle �K is proportional to the ac Hall
conductivity �xy���. However, the proportionality relation
also involves the complex refraction coefficient n���, which
is poorly known for Sr2RuO4. Using a Drude model with the
experimentally estimated parameters to obtain n��� and the
anomalous Hall conductivity from our calculations, we esti-
mate the magnitude of the polar Kerr angle at �=0.8 eV as
�K�43 nrad, which is on the same order as the experimen-
tally observed value of 65 nrad.1 Despite numerous assump-
tions and approximations used, this result is encouraging and
indicates that impurity scattering models may provide a vi-
able explanation for the polar Kerr effect in Sr2RuO4. How-
ever, the main conclusion of our paper is not a particular
value of �K, but the qualitative understanding that the mag-
nitude of the anomalous Hall conductivity and the Kerr angle
are directly proportional to some power of the impurity con-
centration and should strongly vary among different samples.
Systematic measurements of the Kerr angle as a function of
concentration of the intentionally introduced impurities
would be very desirable. The study should be performed for

0.8 1.0 1.2 1.4

�0.8
�0.6
�0.4
�0.2

0.2
0.4
Α

�(�� )

FIG. 10. �Color online� Real and imaginary parts of the dimen-
sionless function ���� given by Eqs. �92� and �88�. The solid �blue�
and dotted �black� lines represent ����� for �=0.4 and 0.1 eV,
respectively. The dashed �red� and dash-dot �brown� lines represent
����� for �=0.4 and 0.1 eV, respectively. The parameters �ab

=2.9 eV and ��=10 are taken from Ref. 71.
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sufficiently low concentration in the range �0�1 /�, where
impurities do not affect the superconducting order signifi-
cantly, but do affect the polar Kerr effect.
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APPENDIX A: THE PEIERLS-ONSAGER SUBSTITUTION
FOR SUPERCONDUCTORS

The BCS mean-field action for a superconducting system

is given in Eq. �5�. The corresponding Hamiltonian Ĥ�p� has
the form of a 2	2 Nambu matrix

Ĥ�p� =  �p� ��p�
���p� − �− p�

� , �A1�

acting on the spinor ���p� ,�†�−p��. We omitted the spin in-
dices of the fermion operators because they are not essential
for the consideration here. The notation in Eq. �A1� is the
same as in Sec. II A. For simplicity, we will assume that
�−p�=�p�, which is the case for most centrosymmetric ma-
terials, including Sr2RuO4.

When the system is subject to an electromagnetic field,
the question arises how the vector potential A should be
introduced into the Hamiltonian �A1�. For nonsuperconduct-
ing systems, it is introduced via the Peierls-Onsager substi-
tution p→p−eA, and it is tempting to make the same sub-
stitution in Eq. �A1�. However, one should be careful and
re-examine how this substitution originates from the require-
ment of gauge invariance. The two diagonal terms in Eq.
�A1� give the following contributions �d3r�†�r��−i����r�
and �d3r��r��−i���†�r� to the Hamiltonian of the system in
the real-space representation. When we make a gauge trans-
formation of the fermion operators ��r�→��r�ei��r�, the gra-
dients of the phase � need to be compensated by the gauge
transformation of the vector potential A. This leads to the
substitution p→p−eA and p→p+eA in the upper and lower
diagonal terms in Eq. �A1�. The substitutions are different
because of the different order of � and �† in these terms.
This is very well known.43

For unconventional superconductors, where the pairing
potential ��p� explicitly depends on the electron momentum
p, the question arises whether the Peierls-Onsager substitu-
tion should be made in ��p�. However, it is not clear whether
the rule p→p−eA or p→p+eA should be used in the off-
diagonal term in Eq. �A1�. Actually, the Peierls-Onsager sub-
stitution is not needed in the off-diagonal term because,
when properly written, it is already gauge invariant without
an introduction of the vector potential A. When the order

parameter varies in space, the pairing potential �3� should be
written as the symmetrized combination, i.e., the anticommu-
tator, of the two-component order parameter �= ��x , i�y�
and the momentum operator p= �px , py�. The BCS Hamil-
tonian �A1� acquires the following form in the real space:

Ĥ =  �− i � − eA� − i�� · � + � · ��/2
− i�� · �� + �� · ��/2 − �− i � + eA�

� .

�A2�

It is now easy to check that the off-diagonal terms in Eq.
�A2� are gauge invariant under the simultaneous phase trans-
formation of the fermion operators ��r�→��r�ei��r�, �†�r�
→�†�r�e−i��r�, and the superconducting order parameter
��r�→��r�e2i��r�. Notice that the gradient operators in Eq.
�A2� act to the right on both ��r� and ��r�.

Thus, it is incorrect to make the Peierls-Onsager substitu-
tion p→p−eA in the pairing potential ��p�, as it was pro-
posed in Refs. 40 and 41. Even if such a substitution were
made, it would have generated the term A ·���d3p��
−p���p� and its Hermitian conjugate. These terms vanish be-
cause they reverse sign upon commutation of the fermion
operators and changing sign of the variable of integration p.
This conclusion also holds when the spin indices of the fer-
mion operators � are restored because the spin-triplet order
parameter � is a symmetric spin tensor, so there is no sign
change upon the exchange of the spin indices. Curiously,
when the conventional vertex of interaction with the electro-
magnetic field is dressed by the impurity line as shown in

Fig. 2�b�, the resulting vertices �̂x �14� and �̂y �15� have the
structure similar to the terms discussed above. However,
these vertices do not vanish upon fermion commutation be-
cause they change sign upon the exchange of the fermion
frequencies 
l and 
l+�n.

The BCS Hamiltonian in the form �A2�, with the pairing
potential written as the anticommutator, was introduced and
discussed in Ref. 7 and, more recently, in Ref. 23. This form
was used in most papers on the subject, e.g., in Ref. 31, and
was recently recognized in Ref. 44. For a chiral d+ id super-
conductor, a microscopic derivation from a lattice model was
given in Ref. 42.

The current operator is obtained by expanding the Hamil-
tonian �A2� to the first order in A, which gives the same
result as in Eq. �6�. Notice that the current operator for a
superconducting systems is not given by the derivative

�Ĥ /�p of the Hamiltonian �A1� with respect to the momen-
tum p because p and A do not appear in the combination p
−eA. For this reason, in contrast to nonsuperconducting sys-
tems, the anomalous Hall conductivity of a chiral supercon-
ductor is not expressed in terms of the Berry curvature, as
discussed in Appendix B.

APPENDIX B: CHIRAL SUPERCONDUCTORS
VS THE TRSB TOPOLOGICAL

INSULATORS AND METALS

Insulators with a nontrivial band topology �the topological
insulators� can be divided into two classes: the time-reversal-
invariant and the time-reversal-symmetry breaking �the
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TRSB topological insulators�.73–76 Here we discuss similari-
ties and differences between chiral superconductors and the
TRSB topological insulators. Some of their features, such as
the energy gap in the single-particle spectrum and the pres-
ence of chiral edge states, are common. However, the elec-
tromagnetic properties of chiral superconductors are different
from those of topological insulators, e.g., because supercon-
ductors are not insulators.

Following the pioneering work by Haldane,77 many au-
thors investigated periodic systems with a topologically non-
trivial band structure resulting from a distribution of the ef-
fective Aharonov-Bohm fluxes inside a unit cell. In such
systems, the time-reversal symmetry may be broken even
when the total flux through the unit cell is zero. Typically,
such systems have a nonzero Berry curvature and exhibit
anomalous Hall effect. A model of this kind, involving the
formation of the dxy + idx2−y2 density wave, was proposed in
Ref. 78 to explain the Kerr effect in underdoped cuprates.2

The anomalous Hall effect was studied for this model earlier
in Ref. 79, and the anomalous Nernst effect was discussed in
Ref. 80.

However, it is important to emphasize that the origin of
the anomalous Hall effect in these models has nothing to do
with superconductivity. Thus, these models are not relevant
for Sr2RuO4, where the Kerr effect appears at the supercon-
ducting Tc.

1 If the Kerr effect in Sr2RuO4 were due to a
topologically nontrivial band structure, it would have been
visible above the superconducting Tc, as in the underdoped
cuprates.2 Thus, for the applications to Sr2RuO4, the question
is whether a nonzero anomalous Hall conductivity and the
Kerr effect may originate from the TRSB solely due to chiral
superconductivity and not due to a topologically nontrivial
band structure. For this purpose, one may consider the
simple one-band parabolic dispersion law in the �x ,y� plane
and ignore complications of the real band structure of
Sr2RuO4, which consists of three distinct sheets.5,9 It was
shown in Ref. 32 that the anomalous Hall conductivity of a
clean px+ ipy superconductor vanishes even when an arbi-
trary electron dispersion is considered.

For nonsuperconducting systems, the current operator can

be expressed in terms of the derivatives �Ĥ /�p of the Hamil-

tonian Ĥ with respect to the electron quasimomenta p. For a
topologically nontrivial band structure, the off-diagonal ma-
trix elements of the current operator between different bands
produce a nonzero Berry curvature, and the anomalous Hall
conductivity can be expressed completely in terms of the
Berry curvature.46,47,77–80

The situation is different for chiral superconductors. As
discussed in Appendix A, the current operator for a super-
conductor cannot be expressed in terms of the derivatives

�Ĥ /�p of the BCS Hamiltonian and is not related to the
group velocity �E�p� /�p of the Bogolyubov quasiparticles,
as discussed around Eq. �3� in Ref. 43. Thus, the Hall
conductivity of a superconductor cannot be expressed in
terms of the Berry curvature; moreover, the Hall conductivity
vanishes, as discussed in Sec. I A. In contrast to the
TRSB topological insulators, the effective action of a chiral
superconductor contains only one part of the Chern-Simons
term,7,26–32 involving A0 and Ax or Ay, but does not contain

the other part, involving Ax and Ay. The reason is that
the superconducting order parameter � has the phase �,
which appears in the effective action and modifies require-
ments imposed by the gauge symmetry. When the self-
consistent dynamics of the phase � is taken into account, the
anomalous Hall conductivity vanishes for a clean chiral
superconductor.26–29,32,37

APPENDIX C: CALCULATION OF THE FUNCTION H(�n)

In the following Appendixes, we denote the gap �0 by
simply � in order to shorten lengthy mathematical expres-
sions.

Here we calculate the function H��n� in Eq. �26�,

H��n� = T��
l
 
l + �n

��2 + �
l + �n�2
−


l

��2 + 
l
2�

	 1

��2 + 
l
2

−
1

��2 + �
l + �n�2�2

�C1�

=T��
l
� 
l + �n

��
l + �n�2 + �2�3/2 −

l

�
l
2 + �2�3/2

+
3
l + �n

�
l
2 + �2���
l + �n�2 + �2

−
3
l + 2�n

��
l + �n�2 + �2��
l
2 + �2� . �C2�

In going from Eq. �C1� to Eq. �C2�, the terms odd in 
l and

l+�n vanish after summation over l. After the variable
shift 
l→
l−�n in the first and third terms in Eq. �C2�,
H��n� can be written as

H��n� = T��
l

f�
l� , �C3�

f�
l� =
3
l − 2�n

�
l
2 + �2��
l − �n�2 + �2�

−
3
l + 2�n

�
l
2 + �2��
l + �n�2 + �2�

. �C4�

The Matsubara sum in Eq. �C3� can be replaced by integra-
tion in the complex plane,

T�
l

f�
l� =
1

2
	 f�z�tan z

2T
� dz

2�i
, �C5�

with the contour of integration being a series of circles
around the points on the horizontal axis in Fig. 11, where the
function tan�z /2T� has pole singularities. Then, this contour
is expanded to a circle of an infinite radius and the contours
encircling the poles zj and the brunch cuts of the function
f�z�, as shown in Fig. 11,
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T�
l

f�
l� =
1

2 �
j=1,2,3,4

tan zj

2T
�Res f�zj�

+
1

2
	

C1,C2

f�z�tan z

2T
� dz

2�i
. �C6�

The contribution from the poles at z1,2=−�n� i� and z3,4
=�n� i� is

1

2 �
j=1,2,3,4

tan zj

2T�Res f�zj� =
1

2�
tanh �

2T� �n + 3i�
��n��n + 2i��

+
�n − 3i�

��n��n − 2i��
� . �C7�

The contribution from the branch cuts C1 and C2 is

1

2
	

C1,C2

f�z�tan z

2T
� dz

2�i
=

1

�
	

�

� dx
�x2 − �2 3ix − 2�n

�2 + �ix − �n�2

−
3ix + 2�n

�2 + �ix + �n�2�tanh x

2T
� .

�C8�

Combining the two contributions �C7� and �C8� to Eq. �C3�,
we arrive to Eq. �27� for H��n�.

APPENDIX D: CALCULATION OF THE DRESSED

VERTEX �̂j(p)

Here we calculate the dressed vertex �̂ j�p� by solving the
Bethe-Salpeter equation shown in Fig. 7�b� and given ana-
lytically in Eq. �45�. According to Eq. �52�, to calculate
anomalous Hall response, we need to obtain the dressed ver-

tex function �̂y. By iterating Eq. �45�, we find a geometric

series for �̂y,

�̂y�p� = �̂y�p� + M̂y�
l,�n�

+ niu0
2�

p�

�̂3Ĝp��
l�M̂y�
l,�n�Ĝp��
l + �n��̂3 + . . . ,

�D1�

where the function M̂y is

M̂y�
l,�n� = niu0
2�

p�

�̂3Ĝp��
l��̂y�p�Ĝp��
l + �n��̂3

=
�ypFvF

2��
L�
l,�n��− ia1�̂1 + a2�̂2� . �D2�

The functions a1, a2, and L are defined in Eqs. �47�–�49�,
respectively. The next-order term in Eq. �D1� is

niu0
2�

p�

�̂3Ĝp��
l�M̂y�
l,�n�Ĝp��
l + �n��̂3

=
�ypFvF

2��
L�
l,�n��− ia1�̂1 + a2�̂2��b1�̂0 + ib2�̂3� ,

where the functions b1 and b2 are defined in Eqs. �50� and
�51�. We observe that the higher-order terms bring the pow-
ers of the factor b1�̂0+ ib2�̂3, so we need to sum the following
geometrical series:

�
k=0

�

�b1�̂0 + ib2�̂3�k =
1 − b1

�1 − b1�2 + b2
2 �̂0 +

ib2

�1 − b1�2 + b2
2 �̂3.

�D3�

Using this result in Eq. �D1�, we find the dressed vertex

�̂y�p�,

�̂y�p� = �y�p� +
�ypFvF

2��
L�
l,�n��− ia1�̂1 + a2�̂2�

	 1 − b1

�1 − b1�2 + b2
2 �̂0 +

ib2

�1 − b1�2 + b2
2 �̂3� . �D4�

APPENDIX E: CALCULATION OF THE FUNCTION
K(�n)

The expression for the function K��n� defined in Eq. �59�
can be written as a sum of two terms,

K��n� = K1��n� + K2��n� , �E1�

K1��n� = �
l

T�

2
l + �n
� 3

��
l + �n�2 + �2
−

3

�
l
2 + �2� ,

�E2�

K2��n� = �
l

T�

2
l + �n
��
l + �n�2 + �2


l
2 + �2

−
�
l

2 + �2

�
l + �n�2 + �2� . �E3�

FIG. 11. �Color online� Contours of integration chosen to evalu-
ate the Matsubara sums in Eqs. �C3� and �E5�. The initial contour
�blue lines� encircles the series of points along the horizontal axis,
where tan�z /2T� has pole singularities. Then, the contour is de-
formed to infinity, encircling the poles zj and the brunch cuts C1 and
C2 of the function under the integral �red lines�.
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One can notice that the above expressions for K1��n� and
K2��n� do not have a singularity at 
l=−�n /2. Similarly to
Eq. �C3�, the Matsubara sum in Eq. �E2� can be replaced by
integration in the complex plane around the series of points
along the horizontal axis in Fig. 12, where the function
tan�z /2T� has pole singularities. The contour of integration is
then deformed to go along the branch cuts C1,2,3,4 of the
function under the integral, as shown in Fig. 12. The result is

K1��n� = − 12�̃n	
1

� dx

2�

tanh�x�/2T�
�x2 − 1��̃n

2 + 4x2�
, �E4�

where �̃n=�n /�.
To evaluate the sum in Eq. �E3�, we first shift the fre-

quency 
l→
l+�n in the first term to obtain,

K2��n� = T��
l
� �
l

2 + �2

�2
l − �n���
l − �n�2 + �2�

−
�
l

2 + �2

�2
l + �n���
l + �n�2 + �2�
� . �E5�

The contour of integration used to evaluate the sum in Eq.
�E5� is shown in Fig. 11. The poles yield

K2a��n� =
1

2
tanh �

2T
��1 − �1 − i�̃n�2

2i + �̃n

−
�1 − �1 + i�̃n�2

2i − �̃n
� ,

�E6�

and the branch cuts contribute

K2b��n� = − 2	
1

� dx

2�
�x2 − 1 tanh�x

2T
�

	 � 1

�2ix − �̃n��1 − �x + i�̃n�2�

−
1

�2ix + �̃n��1 − �x − i�̃n�2�� . �E7�

Equations �E4�, �E6�, and �E7� give the expression for K��n�
shown in Eq. �60�.

APPENDIX F: CALCULATION OF THE FUNCTION J(�n)

The Matsubara sum �70� for the function J��n� can be
separated into the terms with poles and branch cuts,

J��n� = T��
l
 1


l
2 + �2 +

1

�
l + �n�2 + �2

−
2

��
l + �n�2 + �2�
l
2 + �2� . �F1�

After shifting 
l in the second term of Eq. �F1�, we get

J��n� = �
l
 2T�


l
2 + �2 −

2T�

��
l + �n�2 + �2�
l
2 + �2� .

�F2�

The first term in Eq. �F2� has only simple poles

�
l

2T�


l
2 + �2 = tanh �

2T
� . �F3�

The contribution from the second term in Eq. �F2� can be
calculated by using the contour shown in Fig. 12,

�

l

2T�

��
l + �n�2 + �2�
l
2 + �2

=
2

�
	

�

�

dx

tanh x

2T
�

�x2 − �2  �

��ix + �n�2 + �2

+
�

��ix − �n�2 + �2� . �F4�

By combining the two contributions �F3� and �F4�, we obtain
the result shown in Eq. �71�.

FIG. 12. �Color online� Contour of integration chosen to evalu-
ate the Matsubara sum in Eqs. �E2� and �F4�. The initial contour
�blue lines� encircles the series of points along the horizontal axis,
where tan�z /2T� has pole singularities. Then, the contour is de-
formed to infinity and goes along the brunch cuts C1,2,3,4 of the
function under the integral �red lines�.
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